首页> 外文OA文献 >Metabolomics, modelling and machine learning in systems biology - Towards an understanding of the languages of cells: Delivered on 3 July 2005 at the 30th FEBS Congress and 9th IUBMB conference in Budapest
【2h】

Metabolomics, modelling and machine learning in systems biology - Towards an understanding of the languages of cells: Delivered on 3 July 2005 at the 30th FEBS Congress and 9th IUBMB conference in Budapest

机译:系统生物学中的代谢组学,建模和机器学习 - 了解细胞语言:2005年7月3日在布达佩斯举行的第30届FEBs大会和第9届IUBmB会议上发表

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The newly emerging field of systems biology involves a judicious interplay between high-throughput 'wet' experimentation, computational modelling and technology development, coupled to the world of ideas and theory. This interplay involves iterative cycles, such that systems biology is not at all confined to hypothesis-dependent studies, with intelligent, principled, hypothesis- generating studies being of high importance and consequently very far from aimless fishing expeditions. I seek to illustrate each of these facets. Novel technology development in metabolomics can increase substantially the dynamic range and number of metabolites that one can detect, and these can be exploited as disease markers and in the consequent and principled generation of hypotheses that are consistent with the data and achieve this in a value-free manner. Much of classical biochemistry and signalling pathway analysis has concentrated on the analyses of changes in the concentrations of intermediates, with 'local' equations - such as that of Michaelis and Menten v=(Vmax·S)/ (S+Km) - that describe individual steps being based solely on the instantaneous values of these concentrations. Recent work using single cells (that are not subject to the intellectually unsupportable averaging of the variable displayed by heterogeneous cells possessing nonlinear kinetics) has led to the recognition that some protein signalling pathways may encode their signals not (just) as concentrations (AM or amplitude-modulated in a radio analogy) but via changes in the dynamics of those concentrations (the signals are FM or frequency-modulated). This contributes in principle to a straightforward solution of the crosstalk problem, leads to a profound reassessment of how to understand the downstream effects of dynamic changes in the concentrations of elements in these pathways, and stresses the role of signal processing (and not merely the intermediates) in biological signalling. It is this signal processing that lies at the heart of understanding the languages of cells. The resolution of many of the modern and postgenomic problems of biochemistry requires the development of a myriad of new technologies (and maybe a new culture), and thus regular input from the physical sciences, engineering, mathematics and computer science. One solution, that we are adopting in the Manchester Interdisciplinary Biocentre (http://www.mib.ac. uk/) and the Manchester Centre for Integrative Systems Biology (http://www.mcisb.org/), is thus to colocate individuals with the necessary combinations of skills. Novel disciplines that require such an integrative approach continue to emerge. These include fields such as chemical genomics, synthetic biology, distributed computational environments for biological data and modelling, single cell diagnostics/bionanotechnology, and computational linguistics/text mining. © 2006 The Author.
机译:系统生物学的新兴领域涉及高通量“湿”实验,计算模型和技术开发之间的明智相互作用,并与思想和理论世界相结合。这种相互作用涉及反复的循环,因此系统生物学根本不局限于依赖假设的研究,而智能的,有原则的,产生假设的研究非常重要,因此与无目的捕捞远非如此。我试图说明每个方面。代谢组学的新技术发展可以大大增加人们可以检测到的代谢物的动态范围和数量,并且可以将这些代谢物用作疾病标记,并在随后的原则上生成与数据一致的假设,并以有价值的方式实现这一目标。自由方式。许多经典的生物化学和信号转导途径分析都集中在中间体浓度变化的分析上,其中使用了“局部”方程式,例如Michaelis和Menten v =(Vmax·S)/(S + Km)方程,各个步骤仅基于这些浓度的瞬时值。最近使用单细胞的研究(不受具有非线性动力学的异质细胞显示的变量在理论上不受支持的平均值)导致人们认识到某些蛋白质信号传导途径可能不(仅)将其信号编码为浓度(AM或振幅) (以类比无线电广播方式调制),但通过改变这些浓度的动态变化(信号是FM或频率调制)。原则上,这有助于直接解决串扰问题,导致对如何理解这些途径中元素浓度动态变化的下游影响进行深刻的重新评估,并强调了信号处理的作用(而不仅仅是中间体) )中的生物信号传递。正是这种信号处理是理解细胞语言的核心。要解决生物化学的许多现代和后基因组问题,就需要开发无数新技术(也许还有新文化),并因此需要物理科学,工程学,数学和计算机科学的定期投入。因此,我们正在曼彻斯特跨学科生物中心(http://www.mib.ac.uk/)和曼彻斯特集成系统生物学中心(http://www.mcisb.org/)中采用的一种解决方案是:使个人具有必要的技能组合。需要这种综合方法的新颖学科不断涌现。这些领域包括化学基因组学,合成生物学,用于生物数据和建模的分布式计算环境,单细胞诊断/仿生技术以及计算语言学/文本挖掘。 ©2006作者。

著录项

  • 作者

    Kell, Douglas B.;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号